自动校直——平衡校正技术在轴类零件制造中的应用 | ||||||||||||||||||||||||||||||||||||||||||
查看次数:1726 更新时间:2009/8/24 14:12:56 | ||||||||||||||||||||||||||||||||||||||||||
自动校直是平衡校正技术的一个重要领域,指的是机械产品中作旋转运动或往复运动的细长轴、杆类零件,在加工或热处理过程中产生的弯曲变形,通过高精度测量后迅速地予以校正,使工件恢复直线状态的一组自动进行的操作。自动校直工序在汽车工业,特别是轿车工业中用得最多,如发动机中的曲轴、凸轮轴,变速箱中的传动轴等轴类零件以及转向机中的转向拉杆,减振器中的连杆等杆类零件均需要经过严格的校直。相比之下,机床等工业产品中的某些轴类零件,虽然也有很严的直线性要求,需在制造中设置校直工序,但很少用自动校正方式。其原因是轿车为大批量生产方式,除了确保质量外,还必须有很高的效率和较低的成本。图1是几种有代表性的零件的示意图。尽管形状、尺寸各异,但对所有这些工件的校直,性质都是相类似的,甚至都可以在同一种但不同规格的自动校直机上进行校正。轴类、杆类零件的自动校直过程包括自动测定工件的校直量、自动实施校直操作和事后的检验。尽管这类设备有很多品种,结构、性能各不相同,但基本形式却颇多共同处,最主要的一点就是上述三项功能一般都在一个工位上实现,不象另一些自动校正设备,如动平衡、称重去重自动机的总体布置那么形式繁多。按自动化程度的高低,它们被分成全自动和半自动两类。主要差别在于工件的上、下料方式。对后一种情况,被校正的轴类零件进入和退出工位由操作者人工进行,工件到位后,操作人员按下按钮,以下的测量、校正和检验工作全部由机器自动完成。全自动校直机的上、下料多数采用抬起步伐式输送方式。这是一种同步作用的多工位梁式输送装置,不但具有较高的输送速度,而且动作可靠。驱动源为液压,但也有用气动和机械的。图2是这类自动校直机中的一种。根据工件的不同规格,即使同一专业生产厂的产品也分成多个品种、若干个系列,不仅表现在工作压力上(适应规格不同的轴类零件),而且在主机形式和工作驱动方式等方面也有所区别。以主机形式为例,目前主要有两种:C型类似于硬度机样式,门型则类似于压力机。前一种形式的机型在大小不等的各种自动校直机上都有应用,而后一种主要用在中、大型校直机上。表1所示为三种系列化自动校直机的主要技术指标。
图1
图3 图4 对测量结果进行判断,若每个截面的实测径向跳动量都在允许公差范围以内,则此工件为合格品,不需再进行校直。这种情况下,两夹持顶尖退回,步伐式输送机构动作,动梁托起工件移出测量、校正工位。反之,若每个跳动量的实测值既超出公差范围,也超出了可校直的上、下限临界点,则该轴为废品,由输送装置移走,并被推入一专门盛放不合格品的料箱中。只有当工件的测量结果介于校直范围,即超出合格品界限,但小于废品临界点时,才真正开始按校正程序对工件执行校直。此时,脱离两顶尖夹持状态的轴被支承在固定V型架和中间若干个可移动的支承11(根据需要确定工作位置,图3中有一个活动支承)上,对准工件第一个校正截面的压头7在液压缸2的驱动下快速下移(图3中3为液压缸运动导向装置)。当距离接触表面6~7mm时,由一接近开关发出信号,使压头转而以很慢的且很精确的速度下降,在压头接触轴上表面的一瞬间,一个零位检测系统发出精确的触发信号,使微机系统能准确地测出压头的工作行程,而且消除了由于压头磨损可能引起的误差。压头的校正量(工作行程)是由工件的自身特性和截面所在位置的弯曲程度决定的。另外,除轴两端的固定支承外,中间支承的数量和位置也是预先确定的。因为实施校正时,在压头加力时,只有邻近两支承真正起作用。第一次校正操作完成后,压头上升至起始点与工件的中间位置,然后工件在静止状态下由测量单元对经校正的工件弯曲度进行检查。如果测得结果已在允差以内,则这一点(截面)的校正就暂告结束。微机控制系统会通过图3中的电机6,利用滚珠丝杠5驱动压头装置沿导轨移至轴上的第二个校正位置,类似第一个那样进行作业。若实测结果显示仍处在允差以外,即原有弯曲度未得到有效的校正,这就意味着第一次校正时压头行程太小,此时微机系统会对原来行程量加以修正,确定一个新的合适的工作行程,然后对工件的这个截面进行新一轮校直作业。反之,假如检测后表明校正过量,则说明压头的工作行程太大,微机控制系统一方面将根据实际过量情况作修正,再次确定对这个点进行校正的压头工作行程;另一方面,通过机器又一次启动,重复前面的步骤,经双顶尖相向移动、重新夹持工件旋转以及测量、定位等动作过程,仍从第一点起实施校正。需要指出的是,轴类零件的校直往往有反复现象,即同一点(截面)常需经过数次校正。上面介绍的两种情况还是比较简单的,有时还存在校正完毕后,前面点的弯曲度又超差,再得返回作业的情况。在批量生产情况下,为保证必要的效率,一般都在自动校直时规定了每个点最多校正次数,超过次数仍未达到要求的工件,作废品处理。图5是自动校直的程序框图,反映了整机的主要工作过程及其相互关系。 图5 图3所示的自动校直机还具有以下9项统计分析的功能:1)经过校正工件的总数;2)合格品总数;3)废品总数;4)合格品所占百分比;5)一批被校工件中,每个点的最大跳动值;6)一批被校工件中,每个点的最小跳动值;7)一批被校工件中,每个点在校正前的平均跳动值;8)各点的标准偏差;9)各点的CP值。 3 自动校直的机理简介 校直的机理涉及工件的变形规律,而工件的变形规律直接与其几何形状、材料和热处理等因素有关。事实上,即使在批量生产情况下,两根任意抽取的工件的负荷/变形特性曲线之间也总有微小差别,因此,自动校直机在校正程序设计过程中,只能采取统计分析的方法,以确定压头工作行程、行程补偿等数值。另一方面,在轴类工件中,有相当部分并非在圆周各个方向都是对称的,如凸轮轴、曲轴等。为简化程序,凸轮轴还是作为全对称工件来处理的,而曲轴则比较复杂。图6a是一种四缸发动机曲轴及其相应的负荷/变形特性曲线图(图6b)。在图中,显示了在工件同一截面X、Y、Z三个方向施加压力后的变形规律。其中,工件在Z方向的刚度最大,故其在弹性区内线性段的斜率也最大;X、Y两个方向的刚性很接近。图6b还说明了一批工件力学性能之间客观上存在的差别,图中几根曲线分别反映编号为1、2、3的三组工件的负荷/变形规律。由于斜率较大,故确定它们的弹性极限和对应的变形量还较容易。如图中工件在Z方向的变形量超过1.67mm、在Y方向超过2.19mm时,就会产生塑性变形,X方向的弹性极限介于Y和Z之间,故压头的工作行程必须大于1.67mm或2.19mm。在此基础上,再叠加校正值,且考虑一些其他因素的影响。由此可见,压头对工件的校正完全是以上述这些基本情况为基础的。当测量结果表明,最大跳动发生的平面(即校正面)位于图6a中X、Y和Z轴以外的方位时,校正过程就比较复杂。一种方法是把弯曲度分解到X(Y)、Z两个方向,分量的确定既要依据偏转度,又要考虑相邻两方向的不同刚度值,然后再在X、Y和Z三个方向通过压头校正;另一种方法是类似一般工件,在任意方向进行校正,但必须先经过微机运算确定此时工件的负荷变形规律,只有在此基础上,压头的工作行程才是合理的。 文章来源:机械专家网 |
上一条:平衡校正技术在轴类零件制造中的应用
下一条:型材校直机技术参数 |